Daily Shaarli

All links of one day in a single page.

October 25, 2021

Tensorflow/Pytorch with CUDA on WSL
  1. Follow this instruction from NVIDIA to install CUDA drivers for WSL.

DO NOT install CUDA Toolkit yet. The version in that instruction is not compatible with current version of Tensorflow/Pytorch.

  1. Install CUDA Toolkit 11.8.0 for WSL:
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-wsl-ubuntu-11-8-local_11.8.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-8-local_11.8.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-11-8-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda

Add CUDA to path:

echo 'export PATH=/usr/local/cuda/bin:$PATH' >> ~/.zshrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.zshrc

Symlink libcuda (needed for building darknet):

sudo ln -s /usr/lib/wsl/lib/libcuda.so.1 /usr/local/cuda/lib64/libcuda.so
  1. Install cuDNN

Go to https://developer.nvidia.com/rdp/cudnn-download and download cuDNN for CUDA 11.x for Linux.
Filename: cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar.xz

tar -xvf cudnn-linux-x86_64-8.9.4.25_cuda11-archive.tar.xz
cd cudnn-linux-x86_64-8.9.4.25_cuda11-archive
sudo cp -P include/* /usr/local/cuda/include/
sudo cp -P lib/* /usr/local/cuda/lib64/
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
sudo ldconfig /usr/local/cuda/lib64
  1. Install pyenv and create a virtual environment

  2. Install Tensorflow and Pytorch:

pip install --upgrade pip setuptools wheel
pip install torch torchvision torchaudio
pip install tensorflow
  1. Install additional packages (optional):
pip install jupyterlab